Earth, Moon Shared Protecting Magnetic Shield by Elizabeth Landau, NASA
October
18, 2020
Four-and-a-half billion years ago, Earth’s surface was a menacing, hot mess. Long before the emergence of life, temperatures were scorching, and the air was toxic. Plus, as a mere toddler, the Sun bombarded our planet with violent outbursts of radiation called flares and coronal mass ejections. Streams of charged particles called the solar wind threatened our atmosphere.
Our planet was, in short, uninhabitable.
But a neighboring shield may have helped our planet retain its
atmosphere and eventually go on to develop life and habitable
conditions. That shield was the Moon, says a NASA-led study in the
journal Science Advances.
The Earth and Moon, shown here in a composite of two images from the Galileo mission of the 1990s, have a long shared history. Billions of years ago, they had connected magnetic fields. (Illustration
by U.S. Geological Survey -
Astrogeology Science Center
- June 4, 1998)
|
“The Moon seems to have presented a substantial protective
barrier against the solar wind for the Earth, which was critical to
Earth’s ability to maintain its atmosphere during this time,” said
Jim Green, NASA’s chief scientist and lead author of the new study.
“We look forward to following up on these findings when NASA sends
astronauts to the Moon through the Artemis program, which will
return critical samples of the lunar South Pole.”
A Brief
History Of The Moon
The Moon formed 4.5 billion years ago
when a Mars-sized object called heia slammed into the proto-Earth
when our planet was less than 100 million years old, according to
leading theories. Debris from the collision coalesced into the Moon,
while other remnants reincorporated themselves into the Earth.
Because of gravity, the presence of the Moon stabilized the Earth’s
spin axis. At that time, our planet was spinning much faster, with
one day lasting only 5 hours.
And in the early days, the Moon
was a lot closer, too. As the Moon’s gravity pulls on our oceans,
the water is slightly heated, and that energy gets dissipated. This
results in the Moon moving away from Earth at a rate of 1.5 inches
per year, or about the width of two adjacent dimes. Over time, that
really adds up. By 4 billion years ago, the Moon was three times
closer to Earth than it is today – about 80,000 miles away, compared
to the current 238,000 miles. At some point, the Moon also became
“tidally locked,” meaning Earth sees only one side of it.
Scientists once thought that the Moon never had a long-lasting
global magnetic field because it has such a small core. A magnetic
field causes electrical charges to move along invisible lines, which
bow down toward the Moon at the poles. Scientists have long known
about Earth’s magnetic field, which creates the beautifully colored
aurorae in the Arctic and Antarctic regions.
A magnetic field
serves as a shield causing electrical charges to move along its
invisible lines. Scientists have long known about Earth’s magnetic
field, which causes the beautifully colored aurorae in the Arctic
and Antarctic regions. The movement of liquid iron and nickel deep
inside the Earth, still flowing because of the heat left over from
Earth’s formation, generates the magnetic fields that make up a
protective bubble surrounding Earth, the magnetosphere.
But
thanks to studies of samples of the lunar surface from the Apollo
missions, scientists figured out that the Moon once had a
magnetosphere, too. Evidence continues to mount from samples that
were sealed for decades and recently analyzed with modern
technology.
Like Earth, the heat from the Moon’s formation
would have kept iron flowing deep inside, although not for nearly as
long because of its size.
““It’s like baking a cake: You take
it out of the oven, and it’s still cooling off,” Green said. “The
bigger the mass, the longer it takes to cool off.”
A Magnetic
Shield
The new study simulates how the magnetic fields of the
Earth and Moon behaved about 4 billion years ago. Scientists created
a computer model to look at the behavior of the magnetic fields at
two positions in their respective orbits./p>
This illustration shows how Earth and its Moon both had
magnetic fields that were connected billions of years ago,
helping to protect their atmospheres from streams of
damaging solar particles, according to new research.
(Illustration by NASA - 2020)
|
At certain times,
the Moon’s magnetosphere would have served as a barrier to the harsh
solar radiation raining down on the Earth-Moon system, scientists
write. That’s because, according to the model, the magnetospheres of
the Moon and Earth would have been magnetically connected in the
polar regions of each object. Importantly for the evolution of
Earth, the high-energy solar wind particles could not completely
penetrate the coupled magnetic field and strip away the atmosphere.
But there was some atmospheric exchange, too. The extreme
ultraviolet light from the Sun would have stripped electrons from
neutral particles in Earth’s uppermost atmosphere, making those
particles charged and enabling them to travel to the Moon along the
lunar magnetic field lines. This may have contributed to the Moon
maintaining a thin atmosphere at that time, too. The discovery of
nitrogen in lunar rock samples support the idea that Earth’s
atmosphere, which is dominated by nitrogen, contributed to the
Moon’s ancient atmosphere and its crust.
Scientists calculate
that this shared magnetic field situation, with Earth and Moon’s
magnetospheres joined, could have persisted from 4.1 to 3.5 billion
years ago.
“Understanding the history of the Moon's magnetic
field helps us understand not only possible early atmospheres, but
how the lunar interior evolved,” said David Draper, NASA’s deputy
chief scientist and study co-author. “It tells us about what the
Moon's core could have been like -- probably a combination of both
liquid and solid metal at some point in its history -- and that is a
very important piece of the puzzle for how the Moon works on the
inside.”
Over time, as the Moon’s interior cooled, our
nearest neighbor lost its magnetosphere, and eventually its
atmosphere. The field must have diminished significantly 3.2 billion
years ago, and vanished by about 1.5 billion years ago. Without a
magnetic field, the solar wind stripped the atmosphere away. This is
also why Mars lost its atmosphere: Solar radiation stripped it away.
IIf our Moon played a role in shielding our planet from harmful
radiation during a critical early time, then in a similar way, there
may be other moons around terrestrial exoplanets in the galaxy that
help preserve atmospheres for their host planets, and even
contribute to habitable conditions, scientists say. This would be of
interest to the field of astrobiology – the study of the origins of
life and the search for life beyond Earth.
Human Exploration
Can Tell Us More
This modeling study presents ideas for how
the ancient histories of Earth and Moon contributed to the
preservation of Earth’s early atmosphere. The mysterious and complex
processes are difficult to figure out, but new samples from the
lunar surface will provide clues to the mysteries.br> As NASA
plans to establish a sustainable human presence on the Moon through
the Artemis program, there may be multiple opportunities to test out
these ideas. When astronauts return the first samples from the lunar
South Pole, where the magnetic fields of the Earth and Moon
connected most strongly, scientists can look for chemical signatures
of Earth’s ancient atmosphere, as well as the volatile substances
like water that were delivered by impacting meteors and asteroids.
Scientists are especially interested in areas of the lunar South
Pole that have not seen any sunlight at all in billions of years --
the “permanently shadowed regions” – because the harsh solar
particles would not have stripped away volatiles.
Nitrogen
and oxygen, for example, may have traveled from Earth to Moon along
the magnetic field lines and gotten trapped in those rocks.
“Significant samples from these permanently shadowed regions will be
critical for us to be able to untangle this early evolution of the
Earth’s volatiles, testing our model assumptions,” Green said.
The other co-authors on the paper are Scott Boardsen from the
University of Maryland, Baltimore County; and Chuanfei Dong from
Princeton University in New Jersey.
National Aeronautics and Space Administration
(NASA)
|
|